Journal of Materials Chemistry A

PAPER

Cite this: J. Mater. Chem. A, 2013, 1, 273

Received 24th August 2012 Accepted 12th September 2012

DOI: 10.1039/c2ta00064d

www.rsc.org/MaterialsA

1 Introduction

With the rapid depletion of fossil fuels and increasingly worsened environmental pollution caused by vast fossil-fuel consumption, scientists worldwide are searching for renewable and clean energy sources to replace traditional fossil fuels that can enable the sustainable development of our economy and society. However, exploitation of alternative and green energy sources requires the efficient support of energy storage/ conversion devices that can compensate for their intermittent

- "Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore. E-mail: yuting@ ntu.edu.sg
- ^bEnergy Research Institute at Nanyang Technological University (ERIAN), 639789 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- ^dInstitute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400700, P. R. China
- *Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 637371, Singapore
- ¹Department of Physics, Faculty of Science, National University of Singapore, 117542 Singapore
- ^sSchool of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
- † Electronic supplementary information (ESI) available. See DOI: 10.1039/c2ta00064d

‡ These authors contributed equally to this work.

Controlled synthesis of hierarchical graphene-wrapped TiO₂@Co₃O₄ coaxial nanobelt arrays for high-performance lithium storage[†]

Yongsong Luo,‡^{abg} Jingshan Luo,‡^a Weiwei Zhou,^a Xiaoying Qi,^c Hua Zhang,^c Denis Y. W. Yu,^b Chang Ming Li,^{de} Hong Jin Fan^{ab} and Ting Yu^{*abf}

As one of the most important research areas in lithium-ion batteries (LIBs), well-designed nanostructures have been regarded as key for solving problems such as lithium ion diffusion, the collection and transport of electrons, and the large volume changes during cycling processes. Here, hierarchical graphene-wrapped $TiO_2@Co_3O_4$ coaxial nanobelt arrays (G-TiO_2@Co_3O_4 NBs) have been fabricated and further investigated as the electrode materials for LIBs. The results show that the yielded G-TiO_2@Co_3O_4 NBs possess a high reversible capacity, an outstanding cycling performance, and superior rate capability compared to TiO_2 and $TiO_2@Co_3O_4$ nanobelt array ($TiO_2@Co_3O_4$ NBs) electrodes. The core-shell $TiO_2@Co_3O_4$ NBs may contain many cavities and provide more extra spaces for lithium ion storage. The introduction of graphene into nanocomposite electrodes is favorable for increasing their electrical conductivity and flexibility. The integration of hierarchical core-shell nanobelt arrays and conducting graphene may induce a positive synergistic effect and contribute to the enhanced electrochemical performances of the electrode. The fabrication strategy presented here is facile, cost-effective, and can offer a new pathway for large-scale energy storage device applications.

characteristics. In this context, lithium ion batteries (LIBs) have attracted worldwide concern and increasing research interest over the past decade due to the fact that they can continuously and efficiently store electrochemical energy.¹⁻³

Currently, the ever-growing market demand for high energy density, high power density, good safety, and long cycle life has stimulated numerous research efforts aimed at the development of new high performance electrode materials for LIBs.4-7 Transition metal oxides $(M_rO_v, M = Fe, Co, V, etc.)$ have long been focused on as anode materials for LIBs due to their high electrochemical capacities compared to carbonaceous materials. However, an intrinsic disadvantage associated with drastic volume variation makes these metal oxide based anodes suffer from rapid capacity loss, especially at high charge-discharge rates upon cycling which thereby limits their potential use as electrodes.8-11 Among diverse metal oxides, titania has received special interest as an anode material for LIBs because it is not only a fast and low voltage insertion host for Li, but is also an abundant, low cost and environmentally benign material with a very low volume change.12,13 Unfortunately, the poor electrical transport of titania constitutes a major obstacle for its practical application in lithium storage given that a high overpotential is commonly applied during the cycling processes and thus dramatically diminishes its rate performances.14,15 Thus, developing new synthetic strategies to fabricate high performance metal oxide electrode materials with satisfactory

RSCPublishing

View Article Online

high-rate capability and high specific capacity is still a great challenge. To overcome the above-mentioned issues, various metal oxide based nanocomposites with different geometrical attributes, morphological forms, and microarchitectures have been employed as anode materials for LIBs.^{5,16,17} For instance, TiO_2 -RuO₂, CO_3O_4 -C, and MOO_2 -graphene nanocomposites have been demonstrated with improved Li ion insertion performance since they use conductive additives to interlink the host nanostructures.^{14,18-22} Moreover, hierarchical nanostructures have also aroused much interest in a variety of fields because of their extraordinarily high active surface/interface and robust stability.²³⁻²⁹ Electrode materials with a hierarchical nanoarchitecture can not only provide multiple large contact areas, but also allow fast Li ion transport between the electrolyte and the electrode.

In this work, we report the synthesis of hierarchical graphene-wrapped TiO₂(a)Co₃O₄ nanobelt arrays (G-TiO₂(a)Co₃O₄ NBs) as anode materials for LIB applications. This hierarchical structure is expected to manifest greatly improved electrochemical performance due to the integration of many advantages. Firstly, owing to its large surface area, good structural flexibility, and superior electrical conductivity, graphene can effectively buffer the large volume expansion/ contraction and improve the electrical contact of the active materials with current collectors during charge-discharge processes.^{21,30-34} Secondly, both the core and shell materials are relatively abundant, low cost, and environmentally benign. In particular, the Co_3O_4 nanoparticles grafted on the TiO_2 backbone are beneficial for enhancing the electrochemical capacity and cycling stability of the electrode due to the high theoretical capacity of the Co3O4 shell and the low volume change of the TiO₂ core. Thirdly, well-ordered nanostructure arrays grown directly on current collectors show an improved performance, which is induced by the good contact of the active materials and adhesion with the current collector, as well as good strain accommodation.35 This well engineered hierarchical nanostructure not only provides a large interfacial area for fast lithium insertion/extraction but also reduces the diffusion pathways for electronic and ionic transport. As a consequence, we have tested the hierarchical G-TiO₂@Co₃O₄ NBs as potential anode materials for LIBs, exhibiting good rate capability, excellent cycle performance, and highly reversible capacity.

2 Experimental

Synthesis of TiO₂ nanobelt arrays (TiO₂ NBs)

The fabrication process of the TiO_2 NBs on Ti foils was as follows:³⁶ first, the Ti foils (99.7% purity, 0.25 mm thickness, Sigma-Aldrich) were cut into small pieces (1.5 × 4.0 cm) and sonicated in acetone, ethanol, and deionized water for 10 min, respectively. Then they were put into 40 mL of 5 M NaOH aqueous solution in a 50 mL Teflon-lined autoclave. The autoclave was kept at 200 °C for 24 h. After cooling down naturally to room temperature, the samples were washed with deionized water several times and dried in a dry cabinet. Then the samples were immersed in 1.2 M HCl solution for 2 h in order to exchange the Na $^+$ with H $^+$. Finally, the as-prepared samples were annealed at 450 °C for 1 h in an electronic furnace.

Synthesis of TiO₂@Co₃O₄ nanobelt arrays (TiO₂@Co₃O₄ NBs)

 $TiO_2@Co_3O_4$ NBs were prepared using a hydrothermal growth method.³⁷ In a typical synthesis procedure, 0.1 g of Co(N- $O_3)_2 \cdot 6H_2O$, 0.5 g of CO(NH₂)₂, and 0.37 g of NH₄F were added to 40 mL of water and stirred at room temperature for 10 min. The homogeneous solution was transferred into a 50 mL Teflon-lined autoclave. In the meantime, a piece of TiO₂ NBs on Ti foil was introduced into the autoclave. Then the autoclave was sealed and maintained at 120 °C for 5 h, and allowed to cool to ambient temperature naturally. Finally, the resulting precursor was repeatedly washed with distilled water, then dried at 60 °C for 3 h, followed by a calcination treatment in air at 400 °C for 4 h.

Synthesis of G-TiO₂@Co₃O₄ NBs

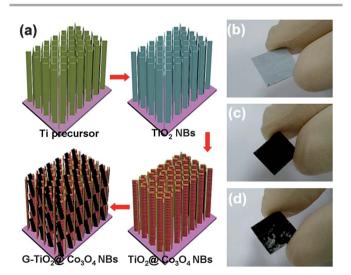
Graphene oxide (GO) was prepared using a modified Hummers method.³⁸ To fabricate graphene-wrapped TiO₂@Co₃O₄ NBs, a general strategy can be achieved by immersing the TiO₂@Co₃O₄ NBs sequentially into the following three solutions for varied durations at room temperature.³⁹ Typically, a piece of substrate covered with the TiO₂@Co₃O₄ NBs was first immersed into a 1 g L⁻¹ poly(allylamine hydrochloride) (PAH) solution for 1 h, followed by immersing the 0.2 g L⁻¹ GO dispersion for 5 h. Then, the sample was transferred into hydrazine (N₂H₄, 98%) solution for 0.5 h. Finally, the sample was removed, washed with deionized water, and dried at 60 °C to obtain the G-TiO₂@Co₃O₄ NBs.

Characterization

The phase purity of the products was characterized by X-ray powder diffraction (XRD) using an X-ray diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å). Scanning electron microscopy (SEM) images were obtained using a JEOL JSM 6700F microscope (Japan). Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) observations were carried out on a JEOL JEM-2010 instrument in bright field and on a HRTEM JEM-2010FEF instrument (operated at 200 kV). Raman spectroscopy was carried out using a WITEC CRM200 Raman system equipped with a 532 nm laser source and a 100× objective lens. X-Ray photoelectron spectroscopy (XPS) spectra were measured on a Perkin-Elmer model PHI 5600 XPS system with a resolution of 0.3–0.5 eV from a monochromated aluminum anode X-ray source.

Electrochemical evaluation

The Swagelok-type batteries were assembled in an Ar-filled glovebox (Mbraun, Unilab, Germany) by directly using the G-TiO₂(a)CO₃O₄ NBs on Ti foils ($m_{G+TiO2+Co3O4} = 0.006$ g; $m_G \approx 0.000$ g, $m_{TiO2} = 0.004$ g, $m_{Co3O4} = 0.002$ g) as the anode materials, a Li-metal circular foil (0.59 mm thick) as the counter and reference electrodes, a microporous polypropylene membrane as the separator, and a 1 M solution of LiPF₆ in


Paper

ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1 by volume) as the electrolyte. The cell was aged for 15 h before measurement. The discharge–charge cycling was performed at room temperature by using a multichannel battery tester (model SCN, USA).

3 Results and discussion

A schematic illustration and optical images of the G-TiO₂(a) Co₃O₄ NBs on Ti foil are displayed in Fig. 1. The whole process involves three steps (Fig. 1a): first, TiO₂ NBs were synthesized through ion exchange from the titanate precursor nanobelt arrays. Then, a Co₃O₄ nanoparticle layer was grown on the surface of the TiO₂ NBs via a hydrothermal process. Finally, the as-obtained TiO₂@Co₃O₄ NBs were coated with graphene oxide and further reduced by hydrazine hydrate in solution, producing the hierarchical G-TiO₂(a)Co₃O₄ NBs. Fig. 1b-d show optical images of the TiO2 NBs, TiO2@Co3O4 NBs, and integrated G-TiO₂(a)Co₃O₄ NBs on a current collector, respectively. It can be seen that the Ti foil surface turned completely grey white after the initial growth of TiO₂ NBs. Furthermore, the TiO₂/Ti substrate was observed to become dark black after the deposition of Co₃O₄, indicating the formation of a Co₃O₄ layer on the surface of the TiO₂ NBs. Eventually, the formation of G-TiO₂@Co₃O₄ NBs still emerged as dark black owing to an ultrathin layer of graphene sheets covering the surface of the TiO₂(a)Co₃O₄ NBs. Typical XRD patterns of the as-prepared TiO₂, TiO₂(a)Co₃O₄ and G-TiO₂(a)Co₃O₄ NBs are distinctly demonstrated in Fig. 2a-c. Besides the peaks originating from the Ti substrate, almost all the identified peaks can be indexed to anatase TiO₂ (JCPDS card no. 21-1272) and cubic spinel Co₃O₄ (JCPDS card no. 42-1467).^{40,41} Moreover, the weak peak centered at $\sim 23^{\circ}$ indicates the existence of amorphous carbon (Fig. 2c).42,43

SEM images of the TiO_2 and $TiO_2(@Co_3O_4 NBs$ are shown in Fig. 3. Evidently, the top-view and cross-sectional SEM images of the as-obtained products show well-aligned TiO_2 NBs

Fig. 1 (a) Schematic representation for the formation processes of G-TiO₂@ Co₃O₄ NBs; (b–d) optical images of TiO₂, TiO₂@Co₃O₄ and G-TiO₂@Co₃O₄ NBs.

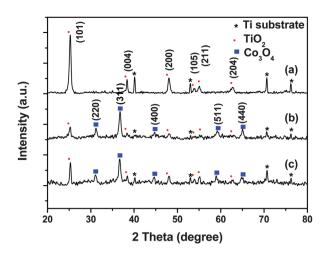
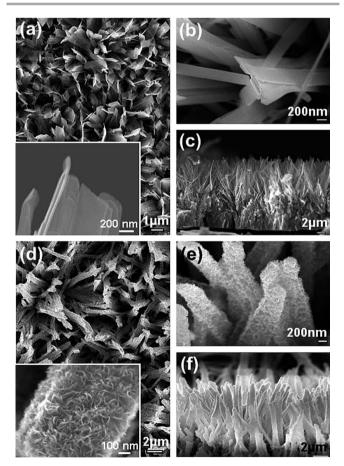
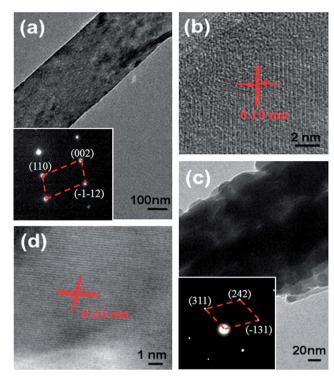




Fig. 2 XRD patterns of as-prepared TiO₂ NBs (curve a); TiO₂@Co₃O₄ NBs (curve b); G-TiO₂@Co₃O₄ NBs (curve c).

(Fig. 3a–c). Close observation reveals that an individual TiO_2 nanobelt is typically about 8–11 µm in length, ~500 nm in width, and ~20 nm in thickness. When this TiO_2 nanobelt experienced a hydrothermal process for Co_3O_4 growth without

Fig. 3 (a and b) Low-magnification and enlarged SEM images of TiO₂ NBs; (c) cross-sectional SEM image of TiO₂ NBs; (d and e) low-magnification and enlarged SEM images of TiO₂@Co₃O₄ NBs; (f) cross-sectional SEM image of TiO₂@Co₃O₄ NBs.

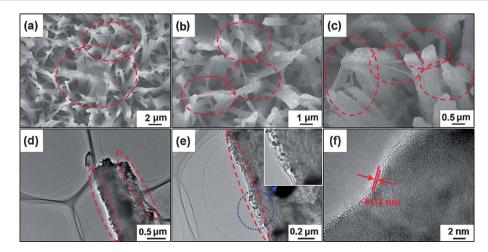


Fig. 4 (a and b) Low-magnification and high-magnification TEM images of TiO₂ nanobelt; (c and d) low-magnification and high-magnification TEM images of TiO₂@Co₃O₄ nanobelt; the insets of (a) and (c) are the corresponding SAED patterns from TiO₂ and TiO₂@Co₃O₄ nanobelts.

any additional growth catalysts, its surface was remarkably covered with a layer of dense Co_3O_4 nanoflakes as shown in Fig. 3d–f. Similarly, the morphology of the TiO₂@Co₃O₄ composite displays a belt-like shape but a rough surface. The structures of the nanobelts were further investigated by TEM. Fig. 4a shows the TEM image of an individual TiO₂ nanobelt, and its corresponding HRTEM image taken near the edge is shown in Fig. 4b. A lattice spacing of 0.19 nm is recognized and can be ascribed to the (200) planes of anatase TiO₂. The selected

area electron diffraction (SAED) pattern of the TiO₂ nanobelt shows a set of well-defined spots, indicative of single-crystallinity. A TEM image of the Co₃O₄ nanostructures on the surface of a TiO₂ nanobelt is also shown in Fig. 4c. From this image, a flake-like Co₃O₄ nanoshell was observed, fully covering the TiO₂ nanobelt surface. In addition, SAED was performed to investigate the crystalline characteristics of the TiO₂(a)Co₃O₄ nanobelt, based on the selected area shown in the inset of Fig. 4c. Clear lattice fringes were also observed (Fig. 4d), further demonstrating the superior crystal quality of the TiO₂@Co₃O₄ NBs. Fig. 5a-c show the representative SEM images for the G-TiO₂@Co₃O₄ NB product at different magnifications. No significant change in the morphology was observed in comparison to the TiO2@Co3O4 NBs. Further observation indicates that the TiO₂(a)Co₃O₄ NBs are wrapped by the graphene layers and assembled into hierarchical nanoarchitectures. To provide further insight into the morphology and structure of the resulting G-TiO₂@Co₃O₄ NBs, TEM investigations were carried out. Fig. 5d and e show a portion of the $G-TiO_2(a)CO_3O_4$ nanobelt hierarchical nanostructure. Across the core-shell structure, it is clearly observed that the ultrathin graphene is located around the TiO₂@Co₃O₄ nanobelt surface. Fig. 5f shows a HRTEM image taken from the edge of an individual G-TiO2@Co3O4 nanobelt; the interplanar spacing of ~ 0.34 nm corresponds to the separation between the (002) lattice planes of graphite. This demonstrates that the $TiO_2(a)$ Co₃O₄ nanobelt assemblies are well wrapped by the ultrathin layer of graphene sheets.

To make sure the entire arrays are converted into G-TiO₂(a) Co₃O₄ NBs, the compositions of the G-TiO₂(a)Co₃O₄ NBs were characterized by Raman spectroscopy. The existence of pure phases of TiO₂ and Co₃O₄ are clearly reflected in the Raman spectra (Fig. 6).^{44,45} Moreover, the characteristic D band at ~1345 cm⁻¹ and G band at ~1586 cm⁻¹ are observed for the G-TiO₂(a)Co₃O₄ NBs. The G-TiO₂(a)Co₃O₄ NBs are strongly anchored onto the Ti foil with good adhesion. The robust mechanical adhesion is manifested by the fact that no material

Fig. 5 (a–c) SEM images of G-TiO₂@Co₃O₄ NBs at different magnifications; (d and e) low-magnification and enlarged TEM images of an individual G-TiO₂@Co₃O₄ nanobelt; (f) HRTEM image of the edge part of one G-TiO₂@Co₃O₄ nanobelt.

Paper

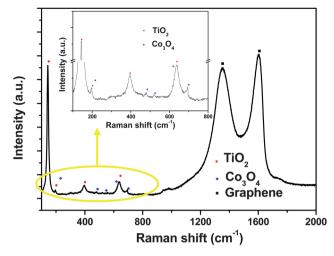


Fig. 6 Raman spectrum of $G-TiO_2@Co_3O_4$ nanobelt arrays. The inset is the magnification of part of the Raman spectrum.

loss occurred after sonication in solution for several minutes, which is very promising for improving the electrochemical performance of the electrode. For comparison, the significant compositional changes during the chemical processing from TiO_2 to $TiO_2@Co_3O_4$ NBs are also characterized by Raman spectroscopy (Fig. S1, see ESI[†]). To estimate the surface electronic state and the composition of the final products, we carried out an XPS study (Fig. 7). The high resolution C 1s spectrum of the G-TiO₂@Co₃O₄ NBs is shown in Fig. 7a. It can be decomposed into four peaks at 284.6, 286.1, 287.4, and 289 eV, respectively.46 These components can be assigned to C from non-oxygenated carbon (CC), COC/COH, a carbonyl group (CO), and a COOH group. The strong C 1s peak (284.6 eV) is related to graphitic carbon in graphene, while the weaker ones from the oxygenated indicate that a certain degree of deoxygenation process accompanies the reduction of graphene oxide.²² The deconvoluted peaks (Fig. 7b) of the O 1s spectrum are also resolved into four components, centered at 530, 531.2, 533, and 534.7 eV, respectively. The low binding energy component observed at 530 eV is attributed to the O²⁻ forming oxides with titanium and cobalt, while the latter three peaks are assigned to OH⁻, C-O and O-C=O, and H₂O, respectively.⁴⁷⁻⁴⁹ Fig. 7c presents the XPS spectra of Ti 2p doublet peaks; the binding energies of Ti 2p1/2 and Ti 2p3/2 were observed at approximately 466 eV and 460 eV, respectively, which is typical of Ti⁴⁺ in an octahedral environment.⁵⁰ Similarly, the core level spectra of Co 2p were curve fitted and are shown in Fig. 7d. The spectrum shows two major peaks at 779.8 and 795.2 eV, assigned to the Co $2p_{3/2}$ and Co $2p_{1/2}$ peaks, respectively. The absence of prominent shake-up satellite peaks in the Co 2p spectra further suggests the formation of the Co₃O₄ phase.^{51,52}

Discharge–charge measurements for the $G-TiO_2@Co_3O_4$ NBs were carried out in the potential range of 5 mV to 3.0 V (ν s. Li) at a current density of 100 mA g⁻¹ up to 200 cycles at ambient temperature. The voltage *versus* capacity profiles are shown in Fig. 8a. In the discharge curve of the first cycle, there are two

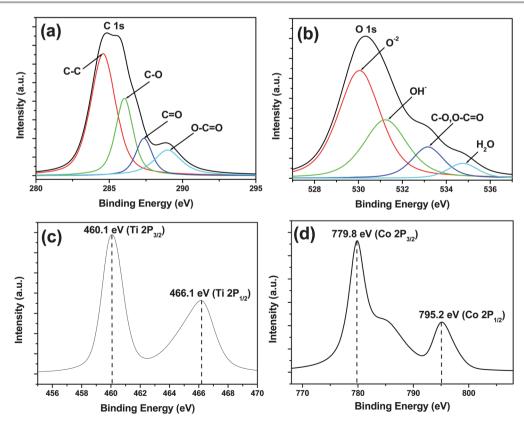
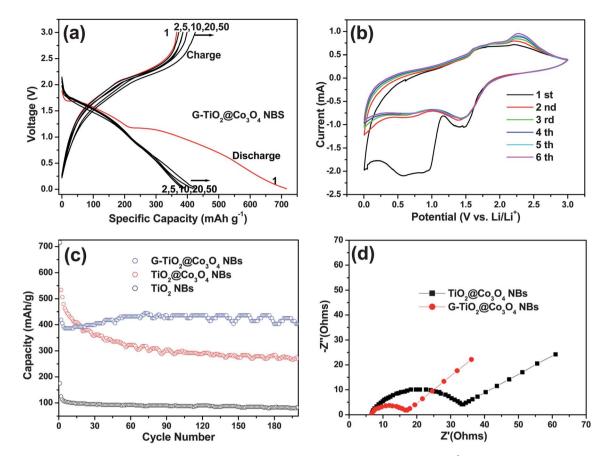



Fig. 7 XPS spectra of (a) C 1s, (b) O 1s, (c) Ti 2p and (d) Co 2p regions of G-TiO₂@Co₃O₄ nanobelt arrays.

Journal of Materials Chemistry A

Fig. 8 (a) Galvanostatic discharge–charge profiles of G-TiO₂@Co₃O₄ NBs at a constant current density of 100 mA g^{-1} ; (b) CV curve of G-TiO₂@Co₃O₄ NB anode at 0.5 mV s⁻¹ scanning rate; (c) cycling performance of the anodes at a constant current density of 100 mA g^{-1} ; (d) electrochemical impedance spectra of TiO₂@Co₃O₄ and G-TiO₂@Co₃O₄ NBs after 1st cycle.

obvious voltage plateaus (\sim 1.7 and \sim 1.2 V) resulting from the lithium reactions with TiO₂ and Co₃O₄, respectively. The first plateau at \sim 1.7 V is associated with the phase transition between the tetragonal TiO₂ and orthorhombic Li_xTiO₂ phases.^{53–55} The second plateau at \sim 1.2 V can be ascribed to the initial reduction of Co₃O₄ to metallic cobalt, accompanied by the electrochemical formation of amorphous Li2O.56,57 The following sloping region may be related to the formation of a solid electrolyte interphase (SEI) film which can cause irreversible capacity loss. The charge curve shows a broad sloping plateau (1.4-2.1 V) due to reversible reactions. It is also observed that the initial discharge and charge capacities for the G-TiO₂@Co₃O₄ NBs are \sim 713 and \sim 364 mA h g⁻¹, respectively. The initial capacity loss of 48.9% may be mainly attributed to irreversible processes such as the inevitable formation of an SEI film and electrolyte decomposition, which are common to most anode materials.⁵⁸ Moreover, the voltage-capacity trace of the TiO₂ and TiO₂@Co₃O₄ NBs were also recorded for comparison (Fig. S2[†]). The results indicate that the first discharge capacity of \sim 713 mA h g⁻¹ for the G-TiO₂(a)Co₃O₄ NBs is higher than those of TiO_2 (Co_3O_4 NBs (~709 mA h g⁻¹) and TiO_2 NBs (~174.5 mA h g⁻¹). The reversible capacity for the G-TiO₂(a) Co₃O₄ NBs is further observed to gradually increases up to the 50th cycle. Fig. 8b shows the cyclic voltammetry (CV) curves of the G-TiO₂(a)Co₃O₄ NB electrode at a scan rate of 0.5 mV s⁻¹ over

the range of 0.005–3.0 V. In the first cycle, two pronounced reduction peaks are observed at ~0.8 V and ~1.5 V, which can be attributed to the formation of Li₂O, as well as the SEI film.^{7,41} The subsequent well-defined oxidation peaks are observed at ~1.6 V and ~2.2 V, indicating the extraction of Li⁺ in the electrode materials.^{59,60} These results nearly coincide with the voltage plateaus in the galvanostatic discharge–charge curve (Fig. 8a). The second and onward CV curves remain steady, indicating highly reversible redox behaviour. This is consistent with its good cycling performance, as discussed below. Moreover, cyclic voltammograms were also investigated on the cells with TiO₂ and TiO₂@Co₃O₄ NBs for comparison (Fig. S3[†]).

The capacity *versus* cycle number plot is shown in Fig. 8c. As can be seen, it is evident that the G-TiO₂@Co₃O₄ NB electrode exhibits exceptional cyclability. The capacity increases gradually in the first 60 cycles and stabilizes at around ~437 mA h g⁻¹ in the subsequent cycles. Although the TiO₂@Co₃O₄ NBs deliver the same capacity as the G-TiO₂@Co₃O₄ NBs in the first cycle, they exhibit drastic capacity fading over the course of the discharge– charge cycles. The capacity difference between the G-TiO₂@ Co₃O₄ and TiO₂@Co₃O₄ NBs becomes large upon cycling, implying that the graphene layers on the surface of the TiO₂@ Co₃O₄ NBs play an essential role in improving the cyclic performance. Moreover, the capacity enhancement can be mainly attributed to the increased reactive sites of the G-TiO₂@Co₃O₄

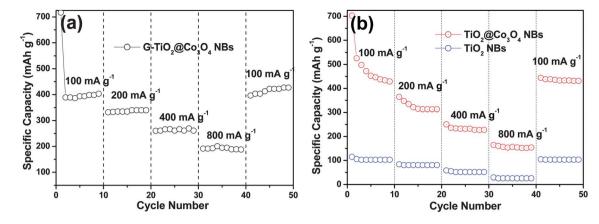


Fig. 9 (a) Reversible capacity vs. current density (rate capability) for G-TiO₂@Co₃O₄ NB anode; (b) reversible capacity vs. current density (rate capability) for TiO₂ and TiO₂@Co₃O₄ NB anodes.

NBs which have been activated in the subsequent cycling, participating in lithium-ion storage and contributing to the final capacity.^{19,39,61} In order to clarify the influence of hybridization on the electrochemical performance of the G-TiO₂(a)Co₃O₄ NBs, we have calculated the theoretical capacity of the physical mixture of pristine materials. The theoretical capacity (C) of the G-TiO₂@Co₃O₄ NBs is calculated as follows:⁶² C_{theoretical} = $C_{
m Graphite}$ imes %_{mass of CTs} + $C_{
m TiO_2}$ imes %_{mass of TiO2} + $C_{
m Co_3O_4}$ imes $\%_{mass \ of \ Fe,O_3} = 372 \times 0.00 + 335 \times 0.67 + 890 \times 0.33 = 520 \ mA \ h$ g^{-1} . The above results show that the G-TiO₂(a)Co₃O₄ NBs can deliver an average capacity of \sim 437 mA h g⁻¹ that is equal to 84% of the theoretical value. However, the capacities of the TiO₂ and TiO₂(a)Co₃O₄ NBs are only \sim 89 and \sim 306 mA h g⁻¹, respectively, at the 90th cycle. Moreover, the first discharge specific capacity of the G-TiO₂@Co₃O₄ NBs is about 713 mA h g^{-1} , which is larger than the theoretically predicted value for G-TiO₂@Co₃O₄ NBs. This phenomenon is attributed to the formation of an SEI layer, generated by the irreversible insertion/deinsertion of Li ions into the host structures or on Li alloying reactions and possible interfacial Li storage.63-65 For a better understanding of the superior electrochemical performance of the G-TiO₂@Co₃O₄ NBs compared with TiO₂(a)Co₃O₄ NBs for lithium energy storage, the electrochemical impedance spectroscopy (EIS) was performed with an amplitude of 5.0 mV over the frequency range from 100 kHz to 0.01 Hz (Fig. 8d). The resulting Nyquist plot exhibits two distinct parts, including a semicircle in the high frequency region and a sloped line in the low frequency region, further demonstrating the long-term electrochemical stability of this electrode material. It is worth noting that the diameter of the semicircle for the G-TiO₂@Co₃O₄ NBs (10.5 Ω) is much smaller than that of the TiO_2 (O_3O_4 NBs (28 Ω), which suggests that the G-TiO₂@Co₃O₄ NBs possess lower contact and charge-transfer resistances. This result indicates that the graphene layers wrapped on the TiO₂@Co₃O₄ NBs not only improve the conductivity of the electrode, but also largely enhance the electrochemical activity of the TiO2@Co3O4 NBs during the cycling processes.

In order to better understand the rate performance of the $G-TiO_2@Co_3O_4$ NBs, the cycling response at continuously

variable rates was evaluated (Fig. 9a). All of the electrodes were first cycled at a current density of 100 mA g⁻¹. An irreversible capacity loss during the first cycle is observed for the electrodes, which is presumably due to decomposition of the electrolyte and/or solvent. Remarkably, in the case of the G-TiO₂@Co₃O₄ NBs, the reversible capacities are retained at \sim 345 and \sim 204 mA h g⁻¹ at 200 and 800 mA g⁻¹, respectively. In contrast, the capacity of the TiO2@Co3O4 NBs decreases to ~313 and \sim 151 mA g⁻¹ under the same testing conditions. After 50 cycles, with the current rate being decreased back to 100 mA g^{-1} , a capacity of \sim 431 mA h g⁻¹ can be recovered for the G-TiO₂@ Co₃O₄ NBs. Benefitting from the unique hierarchical structure and the presence of graphene wrapping, the G-TiO₂@Co₃O₄ NBs are able to demonstrate excellent rate performance and cyclability, emphasizing the efficiency of our protocol in improving the electrochemical performance.

4 Conclusions

In summary, we have demonstrated an efficient strategy for the synthesis of well-ordered hierarchical $G-TiO_2(@Co_3O_4 NBs. The results show that the as-formed hierarchical <math>G-TiO_2(@Co_3O_4 NBs)$ exhibit highly reversible capacity, excellent cyclability, and good rate capability as anode materials for LIBs. The unique textural features of the $G-TiO_2(@Co_3O_4 NBs)$, including the coaxial coreshell structure, good contact and adhesion of the active materials with the current collector, and the homogeneous dispersion of the graphene layer in each $TiO_2(@Co_3O_4 nanobelt$, lead to this remarkable electrochemical performance. It is expected that the structural design of the electrodes in this work provides a facile protocol to prepare other hierarchical nanostructured electrode materials, thus creating a new opportunity for designing next generation energy storage devices.

Acknowledgements

This work is supported by the Singapore National Research Foundation under NRF RF Award no. NRF-RF2010-07, MOE Tier 2 MOE2009-T2-1-037 and CRP Award no.: NRF-CRP4-2008-03.

Notes and references

- 1 K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, Y. M. Chiang and A. M. Belcher, *Science*, 2006, **312**, 885.
- 2 C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, *Nat. Nanotechnol.*, 2008, **3**, 31.
- 3 K. Kang, Y. S. Meng, J. Breger, C. P. Grey and G. Ceder, *Science*, 2006, 311, 977.
- 4 T. H. Han, W. J. Lee, D. H. Lee, J. E. Kim, E.-Y. Choi and S. O. Kim, *Adv. Mater.*, 2010, **22**, 2060.
- 5 A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon and W. V. Schalkwijk, *Nat. Mater.*, 2005, **4**, 366.
- 6 Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, *Science*, 1997, **276**, 1395.
- 7 Y. C. Qiu, K. Y. Yang, L. M. Jin, H. Dong and W. S. Li, *ACS Nano*, 2010, 4, 6515.
- 8 J. Chen, L. Xu, W. Li and X. Gou, Adv. Mater., 2005, 17, 582.
- 9 C. Ban, Z. Wu, D. T. Gillaspie, L. Chen, Y. Yan, J. L. Blackburn and A. C. Dillon, *Adv. Mater.*, 2010, **22**, E145.
- 10 A. M. Cao, J. S. Hu, H. P. Liang and L. J. Wan, *Angew. Chem.*, *Int. Ed.*, 2005, **44**, 4391.
- 11 W. J. Lee, J. M. Lee, S. T. Kochuveedu, T. H. Han, H. Y. Jeong, M. Park, J. M. Yun, J. Kwon, K. No, D. H. Kim and S. O. Kim, *ACS Nano*, 2012, **6**, 935.
- 12 M. M. Rahman, J. Z. Wang, M. F. Hassan, D. Wexler and H. K. Liu, *Adv. Energy Mater.*, 2011, 1, 212.
- 13 J. H. Liu, J. S. Chen, X. F. Wei, X. W. Lou and X. W. Liu, *Adv. Mater.*, 2011, **23**, 998.
- 14 Y. G. Guo, Y. S. Hu, W. Sigle and J. Maier, *Adv. Mater.*, 2007, **19**, 2087.
- 15 S. B. Yang, X. L. Feng and K. Müllen, *Adv. Mater.*, 2011, 23, 3575.
- 16 V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, *Energy Environ. Sci.*, 2011, 4, 3243.
- 17 M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao and B. V. R. Chowdari, *Adv. Funct. Mater.*, 2007, **17**, 2792.
- 18 S. H. Nam, H. S. Shim, Y. S. Kim, M. A. Dar, J. G. Kim and W. B. Kim, ACS Appl. Mater. Interfaces, 2010, 2, 2046.
- 19 Y. S. Luo, J. Jiang, W. W. Zhou, H. P. Yang, J. S. Luo, X. Y. Qi, H. Zhang, D. Y. W. Yu, C. M. Li and T. Yu, *J. Mater. Chem.*, 2012, 22, 8634.
- 20 F. F. Cao, Y. G. Guo, S. F. Zheng, X. L. Wu, L. Y. Jiang, R. R. Bi,
 L. J. Wan and J. Maier, *Chem. Mater.*, 2010, 22, 1908.
- 21 D. H. Wang, D. W. Choi, J. Li, Z. G. Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M. Wang, L. V. Saraf, J. G. Zhang, I. A. Aksay and J. Liu, *ACS Nano*, 2009, **3**, 907.
- 22 Y. M. Sun, X. L. Hu, W. Luo and Y. H. Huang, ACS Nano, 2011, 5, 7100.
- 23 A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala and G. Yushin, *Nat. Mater.*, 2010, 9, 353.
- 24 L. Mai, L. Xu, C. Han, X. Xu, Y. Luo, S. Zhao and Y. Zhao, *Nano Lett.*, 2010, **10**, 4750.
- 25 J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer and X. W. Lou, *J. Am. Chem. Soc.*, 2010, 132, 6124.

- 26 X. S. Fang, L. F. Hu, K. F. Huo, B. Gao, L. J. Zhao, M. Y. Liao, P. K. Chu, Y. Bando and D. Golberg, *Adv. Funct. Mater.*, 2011, 21, 3907.
- 27 F. Sun, J. C. Yu and X. Wang, Chem. Mater., 2006, 18, 3774.
- 28 J. Jiang, J. P. Liu, W. W. Zhou, J. H. Zhu, X. T. Huang, X. Y. Qi,
 H. Zhang and T. Yu, *Energy Environ. Sci.*, 2011, 4, 5000.
- 29 Y. Y. Lu, F. Zhang, Y. Q. Dou, Y. P. Zhai, J. X. Wang, H. J. Liu, Y. Y. Xia, B. Tu and D. Y. Zhao, *J. Mater. Chem.*, 2012, 22, 93.
- 30 X. Wang, X. Zhou, K. Yao, J. Zhang and Z. Liu, *Carbon*, 2011, **49**, 133.
- 31 G. Zhou, D. W. Wang, F. Li, L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu and H. M. Cheng, *Chem. Mater.*, 2010, 22, 5306.
- 32 Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou,F. Li and H. M. Cheng, *ACS Nano*, 2010, 4, 3187.
- 33 H. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Liang, Y. Cui and H. Dai, *J. Am. Chem. Soc.*, 2010, **132**, 13978.
- 34 N. Li, G. Liu, C. Zhen, F. Li, L. Zhang and H. M. Cheng, Adv. Funct. Mater., 2011, 21, 1717.
- 35 J. P. Liu, Y. Y. Li, X. T. Huang, R. M. Ding, Y. Y. Hu, J. Jiang and L. Liao, J. Mater. Chem., 2009, 19, 1859.
- 36 F. Shao, J. Sun, L. Gao, S. W. Yang and J. Q. Luo, J. Phys. Chem.C, 2011, 115, 1819.
- J. Jiang, J. P. Liu, X. T. Huang, Y. Y. Li, R. M. Ding, X. X. Ji,
 Y. Y. Hu, Q. B. Chi and Z. H. Zhu, *Cryst. Growth Des.*, 2010, 10, 70.
- 38 W. S. Hummers and R. E. Offeman, *J. Am. Chem. Soc.*, 1958, **80**, 1339.
- 39 W. W. Zhou, J. X. Zhu, C. W. Cheng, J. P. Liu, H. P. Yang, C. X. Cong, C. Guan, X. T. Jia, H. J. Fan, Q. Y. Yan, C. M. Li and T. Yu, *Energy Environ. Sci.*, 2011, 4, 4954.
- 40 F. F. Cao, X. L. Wu, S. Xin, Y. G. Guo and L. J. Wan, *J. Phys. Chem. C*, 2010, **114**, 10308.
- 41 Y. T. Zhong, X. Wang, K. C. Jiang, J. Y. Zheng, Y. G. Guo, Y. Ma and J. N. Yao, *J. Mater. Chem.*, 2011, **21**, 17998.
- 42 M. Noh, Y. Kwon, H. Lee, J. Cho, Y. Kim and M. G. Kim, *Chem. Mater.*, 2005, **17**, 1926.
- 43 S. Sun, F. Jaouen and J. P. Dodelet, *Adv. Mater.*, 2008, **20**, 3900.
- 44 T. Yu, Y. Zhu, X. Xu, K. S. Yeong, Z. Shen, P. Chen, C. T. Lim, J. T. L. Thong and C. H. Sow, *Small*, 2006, 2, 80.
- 45 D. Zhao, Y. Y. Fu, Q. Han, Y. Y. Xu and H. Zhang, J. Phys. Chem. C, 2007, 111, 18475.
- 46 L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu and J. Li, Adv. Funct. Mater., 2009, 19, 2782.
- 47 G. Bhargava, I. Gouzman, C. M. Chun, T. A. Ramanarayanan and S. L. Bernasek, *Appl. Surf. Sci.*, 2007, **253**, 4322.
- 48 T. Yamashita and P. Hayes, Appl. Surf. Sci., 2008, 254, 2441.
- 49 G. K. Pradhan and K. M. Parida, ACS Appl. Mater. Interfaces, 2011, 3, 317.
- 50 Y. S. Luo, J. S. Luo, J. Jiang, W. W. Zhou, H. P. Yang, X. Y. Qi, H. Zhang, H. J. Fan, D. Y. W. Yu, C. M. Li and T. Yu, *Energy Environ. Sci.*, 2012, 5, 6559.
- 51 T. J. Chuang, C. R. Brundle and D. W. Rice, *Surf. Sci.*, 1976, **59**, 413.

- 52 M. A. Langell, M. D. Anderson, G. A. Carson, L. Peng and S. Smith, *Phys. Rev. B: Condens. Matter*, 1999, **59**, 4791.
- 53 M. A. Reddy, M. S. Kishore, V. Pralong, V. Caignaert, U. V. Varadaraju and B. Raveau, *Electrochem. Commun.*, 2006, 8, 1299.
- 54 G. Sudant, E. Baudrin, D. Larcher and J. M. Tarascon, J. Mater. Chem., 2005, 15, 1263.
- 55 C. H. Jiang, M. D. Wei, Z. M. Qi, T. Kudo, I. Honma and H. S. Zhou, *J. Power Sources*, 2007, **166**, 239.
- 56 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, *J. Power Sources*, 2001, **97**, 235.
- 57 M. M. Rahman, J. Z. Wang, X. L. Deng, Y. Li and H. K. Liu, *Electrochim. Acta*, 2009, 55, 504.
- 58 Z. Y. Wang, D. Y. Luan, S. Madhavi, Y. Hu and X. W. Lou, *Energy Environ. Sci.*, 2012, 5, 5252.

- 59 X. F. Li, X. B. Meng, J. Liu, D. S. Geng and Y. Zhang, *Adv. Funct. Mater.*, 2012, **22**, 1647.
- 60 X. W. Lou, J. S. Chen, P. Chen and L. A. Archer, *Chem. Mater.*, 2009, **21**, 2868.
- 61 Y. X. Chen, L. H. He, P. J. Shang, Q. L. Tang, Z. Q. Liu, H. B. Liu and L. P. Zhou, *J. Mater. Sci. Technol.*, 2011, 27, 41.
- 62 S. M. Paek, E. J. Yoo and I. Honma, Nano Lett., 2009, 9, 72.
- 63 N. Du, H. Zhang, B. Chen, J. Wu, X. Ma, Z. Liu, Y. Zhang,
 D. Yang, X. Huang and J. Tu, *Adv. Mater.*, 2007, **19**, 4505.
- 64 P. Poizot, S. Larunelle, S. Grugeon and M. J. Tarascon, J. Electrochem. Soc., 2002, 149, A1212.
- 65 S. K. Martha, J. Grinblat, O. Haik, E. Zinigrad, T. Drezen, J. H. Miners, I. Exnar, A. Kay, B. Markovsky and D. Aurbach, *Angew. Chem., Int. Ed.*, 2009, **48**, 8559.